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Accurate Head-Related Transfer Functions (HRTFs) are essential for delivering realistic 3D
audio experiences. However, obtaining personalised, high-resolution HRTFs for individual users is
a time-consuming and costly process, typically requiring extensive acoustic measurements. To address
this, spatial upsampling techniques have been developed to estimate high-resolution HRTFs from
sparse, low-resolution acoustic measurements. This paper presents a novel approach leveraging the
spherical harmonic (SH) domain and an Autoencoder Generative Adversarial Network (AE-GAN) to
tackle the HRTF upsampling problem. Comprehensive evaluations are conducted using both perceptual
models and objective spectral metrics to validate the accuracy and realism of the upsampled HRTFs.
The results show that the proposed approach outperforms traditional barycentric interpolation in terms
of log-spectral distortion (LSD), particularly in extreme sparsity scenarios involving fewer than 12
measurements. These results go some way to justifying that the proposed AE-GAN approach is able
to create high-quality, high-resolution HRTFs from only a few acoustic measurements, helping pave

the way for more accessible personalised spatial audio across a range of applications.

0 INTRODUCTION

Advancements in spatial audio technology have enabled sig-
nificant improvements in virtual and augmented reality (VR/AR),
immersive gaming, and hearing assistive devices [1]. A key
component of these advancements is the ability to accurately
reproduce immersive audio, which allows users to experience
sound as if it were coming from different directions [2], mim-
icking what we hear in the real world [3]. Central to this effort
is the use of Head-Related Transfer Functions (HRTFs), which
capture the unique filtering effects caused by an individual’s
anatomy, including the head, torso, and pinnae, on incoming
sound waves [4]. Adapting these HRTFs to individual listeners
is still a significant active research area. This has led to extensive
studies on HRTFs, which characterize the listener-specific
filtering effects introduced by anatomical structures. These
effects arise as sound waves reflect and scatter off the head,
torso, and pinnae before reaching the ear canal. HRTFs encode
both interaural differences (i.e. disparities in the signals received
by each ear) and monaural localization cues [5].

Research has shown that using non-individualized HRTFs can
significantly impair sound source localization accuracy [6+8], as
spectral cues are highly dependent on a listener’s unique anatomy,
particularly the shape of their pinnae [9]. Beyond localization,
non-individualized HRTFs can also degrade perceptual attributes
such as externalization, immersion, coloration, realism, and depth
perception [10-12]. Moreover, the choice of HRTF can greatly
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influence a listener’s ability to understand speech in complex
auditory environments, such as cocktail party scenarios [13].

Various approaches have been explored for HRTF individ-
ualization, including direct acoustic measurements [14]], 3D
scanning [/15]], morphological modeling of ear geometry [16;/17],
and selecting the best-fitting HRTF from a database of pre-
recorded measurements. Selection methods typically rely on
either morphology-based techniques [18}|19]] or perceptual-based
evaluations, such as listener preference [20] or localization
accuracy [21}22]]. A comprehensive overview of these techniques
can be found in [23].

Among these methods, direct acoustic measurements [24]]
remain the gold standard. However, this approach requires a
specialized and expensive setup and is time-consuming, as it
involves capturing hundreds to thousands of impulse responses
(IRs) across different spatial positions [[14]. Techniques such as
interlaced sine sweeps [25] can accelerate the process, partic-
ularly for elevation measurements, but do not fully address the
issues regarding the time required. Other methods aimed at im-
proving measurement efficiency [26,[27]] often demand high-end
equipment, making them impractical for widespread adoption.

As a result, researchers have explored alternative methods
such as 3D scans [15], geometric modelling [16,/17] and
database matching [18}[19,21,[22]. An overview of some of
the most common methods can be found in [23]]. While these
methods have achieved varying degrees of success, they often
underperform compared to acoustic measurements.
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Another promising approach to address the difficulties
attached to acoustically measuring an HRTF is spatial upsam-
pling, where high-resolution HRTFs (typically containing over
300 IRs from multiple directions) are estimated from sparse,
low-resolution measurements (which include only a few IRs
from limited directions) [28]. This reduces the time required, the
number of speakers needed and the possible need for the subject
or speakers to be rotated during the HRTF measurement [29].

There are two primary categories of HRTF upsampling meth-
ods: algorithmic and learning-based. Algorithmic approaches rely
on interpolation, constructing HRTFs for new source positions by
superimposing existing HRTFs or basis functions derived from
them. This interpolation is typically performed independently for
each frequency or time sample using only a sparse HRTF dataset
or even a subset of it. Learning-based approaches, in contrast,
generate HRTFs for new source positions using neural networks
trained on high-resolution datasets. These models learn relation-
ships between HRTFs at different source positions, frequencies,
and time samples, potentially leading to more accurate upsam-
pling. However, algorithmic approaches work with almost any set
of source positions, whereas neural networks are typically trained
for specific spatial configurations. Additionally, neural networks
can introduce hallucination errors, whereas well-parameterized
algorithmic methods are more robust to unseen data.

One of the most widely used algorithmic methods for HRTF
upsampling is barycentric interpolation [30432]. This method
performs well when the HRTFs dataset is relatively dense (e.g.
with measurements spaced 10-15° apart) [33[]. However, its
reliability decreases when interpolating sparse measurements (e.g.
spaced 30-40° apart). Another common approach is spherical
harmonic (SH) interpolation [3438], which similarly struggles
with sparse input data. This is because these methods rely
on averaging existing data points based on prior assumptions.
For instance, barycentric interpolation uses the three nearest
neighbours to compute a weighted average, but as the spacing
between neighbours increases, upsampling accuracy declines.

Recently, machine learning (ML) methods have gained traction
in HRTF personalisation research. Previous studies have demon-
strated that ML techniques can estimate HRTFs from a listener’s
anthropometric measurements. For example, [39] employed a
DNN-based model to synthesize personalized HRTFs using user-
specific anthropometric features, achieving a log-spectral distor-
tion (LSD) of 3.2 dB. This method utilized an autoencoder to
reduce the dimensionality of raw HRTFs, preventing overfitting
due to the typically small dataset size. The autoencoder’s decoder
then estimated HRTF magnitudes using the latent representation
produced by a DNN trained on anthropometric features and
target azimuth. Building on this approach, [40] introduced a dual-
autoencoder model: one for compressing azimuth and anthropo-
metric features and another for reducing the dimensionality of full
HRTF magnitudes. This approach achieved an LSD of 4.3 dB.

ML has also been applied to HRTF upsampling. [41] proposed
a method extending a regularised linear regression (RLR) ap-
proach based on the spherical wavefunction decomposition [42].
This method separated HRTF:s into source position-dependent
and source position-independent components, utilizing an
autoencoder conditioned on source positions. It achieved an LSD
of 4.4 dB when upsampling from 9 to 440 positions. Other ML-
based methods include [43]], which used a deep belief network
(DBN) to achieve an average LSD below 3 dB, though only for
upsampling from 125 to 1250 positions—still a relatively dense
scenario. Another approach in [44] employed a convolutional
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neural network (CNN) demonstrating strong performance with
LSD values of 4.4 dB for upsampling from 23 to 1250 positions
and 3.8 dB for 105 to 1250 positions. However, this model
processed HRTF data as a set of 2D slices rather than considering
the full spherical representation. Additionally, ML techniques
have been used in combination with the spherical harmonic
transform (SHT) interpolation as a postprocessing step [45].

In 2024, in recognition of the need for standardized bench-
marking, the SONICOM IEEE SPS Listener Acoustic Person-
alisation (LAP) Challenge was undertaken, which introduced
a common evaluation framework for spatial upsampling tech-
niques [46]. The challenge provided a rigorous testbed for
evaluating HRTF upsampling methods across different sparsity
levels. The results from the challenge highlighted the strengths
and limitations of existing methods, particularly emphasizing
the need for evaluations using the perceptual auditory models. In
light of the LAP challenge, in this paper, we not only evaluate the
proposed method using the LAP challenge’s standardized bench-
marking on objective metrics but also include a perceptual model
evaluation. We also include a comparison with the challenge
baselines as well as two of the eight challenge submissions.

In this paper, we build on our novel approach presented in [47].
This approach aims to leverage ML and SHs by using an Au-
toencoder Generative Adversarial Network (AE-GAN) deployed
in the SH domain to tackle the problem of HRTF upsampling.
The primary contributions of this study are as follows:

1. A modified AE-GAN architecture, based on the architec-
ture presented in [47], that uses Bayesian optimization for
hyperparameter tuning, leading to a more efficient and stable
training process.

2. A new study into optimal speaker placement for acoustically
measuring a low-resolution HRTF for upsampling.

3. An experimental study including comparisons with state-
of-the-art methods such as SUpDEQ-MCA [35,38] and
GEP-GAN [29,/48]] both of which were presented in the LAP
Challenge [46].

4. Perceptual auditory model evaluations of the proposed
AE-GAN method against traditional interpolation and other
state-of-the-art techniques.

This paper is structured as follows: Section I introduces
the method, including the pre-processing steps along with the
model architecture. Section II explains the experimental setup,
including the dataset used and how the model is trained. Section
I explores model optimisation, and a study of optimal speaker
placement is performed. In Section IV, spectral and perceptual
model-based evaluations are presented. Finally, Section V
provides the conclusions drawn.

1 METHOLOGY

1.1 Data Pre-Processing

An individual’s HRTF data is typically represented by a set
of data points distributed non-uniformly across the surface of a
sphere. CNNs can be employed to extract features from data with
spatial information. However, the limitation of CNNGs is that they
are most effective when dealing with data with uniform spacing.
Applying CNNs directly to the raw HRTF data introduces
challenges with aligning the convolutional kernels to the data,
as the fixed convolutional kernel size and stride assume that
each data point has neighbouring points at regular, predictable
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intervals. Since HRTF data are not uniformly distributed, this
assumption breaks down, leading to misalignment and ineffective
feature extraction. Thuillier et al. [49] proposed spherical CNNs
that leverage neural processes to learn and predict HRTFs at
arbitrary points on a sphere, addressing the challenges of sparse
and irregularly sampled HRTF data. However, Implementing
neural process meta-learners can be computationally demanding.
In this work, the SH transformation is adopted in data pre-
processing for its significant advantages. This approach not only
circumvents the challenge of adapting CNNs to the non-uniform
nature of HRTF data but also improves computational efficiency.
The SH coefficient F;" of degree [ and order m is defined as:

21 T
= [ [ r0.0)17(0.0)sin(9)dgas 1)
where Y/"(6,¢) is the SH basis function of degree / and order 1.
0 and ¢ represent the azimuth and elevation angles, respectively.
(6,0) is the original HRTF data function defined on the sphere.
In acoustics, the SH basis function is defined as:

2I4+1)(I—m)!
Y"0,0)=4 | ——————
"(6.0) 4n(l+m)!
where P"(x) are the associated Legendre functions. The inverse
SHT is a process that reconstructs the original HRTF function
from its SH coefficients F;". The formula for inverse SHT is
given by:

w 1
F(0.0)=3 ). F"Y/"(0.9). 3)
1=0m=—1

By undergoing the SHT, the original spatial HRTF data are
decomposed into a series of coefficients, each of which repre-
sents a unique sound energy distribution pattern in the space.
This decomposition captures essential spatial features and
significantly reduces the complexity of the raw HRTF data. As
a result, the data can be represented in a smooth, continuous
form, enabling efficient interpolation and upsampling at arbitrary
points on the sphere. The proposed procedure of upsampling is
as follows: sparse measurements of HRTFs are first transformed
into low-resolution SH coefficients. Next, the GAN-based model
upsamples the low-resolution coefficients. The upsampled high-
resolution SH coefficients produced by the GAN are then con-
verted back into high-resolution HRTFs using the inverse SHT.

P"(cos(¢))e™® )

1.2 Model Structure

Our proposed method builds upon and extends the AE-GAN
architecture presented in our previous DAFx paper [47], intro-
ducing improvements in discriminator design, training strategy,
and spatial conditioning to enhance performance across sparse
HRTF grids.

1.2.1 Autoencoder

The generator network is an autoencoder with an encoder-
decoder structure. The primary goal of the encoder is to analyze
the low-resolution SHs and find the latent representation z which
contains the most salient features. The decoder aims to project
this latent representation to a higher dimension, generating
high-resolution coefficients.

As shown in Fig.|la the encoder is primarily constructed us-
ing a sequence of concatenated residual blocks. Such a structure
is used to effectively extract features from low-resolution coeffi-
cients while avoiding the vanishing gradient problem. Two fully
connected layers at the output stage are employed to compress
the feature map into a lower-dimensional latent space, obtaining
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the latent representation z. Batch normalization is incorporated
throughout the encoder to stabilize the training process and serves
as a regularization technique. The parametric rectified linear unit
(PReLU) is utilized as the activation function to introduce non-
linearity. The PReLU function is mathematically expressed as:

PReLU(x) =max(0,x)+axmin(0,x), C))

where a is a learnable parameter. Given a non-zero slop a, it can
effectively alleviate the ‘dying ReL U’ problem.

The decoder architecture is based on the iterative up- and
downsampling introduced by [50]. This design employs a series
of alternating up-projection and down-projection operations. The
transition between lower-resolution and higher-resolution feature
spaces allows the network to effectively learn the intricate rela-
tionships between low-resolution and high-resolution features,
leading to finer upsampling outputs. In this work, the iterative
projection unit is implemented to facilitate the iterative up- and
downsampling strategy. An iterative projection unit is made of
four fundamental blocks depicted in Fig. [2} In the up block, the
input low-resolution feature map L'~ is upsampled to Hj, which
is then downsampled back L{,. The difference between these two
low-resolution feature maps is upsampled to . Lastly, the sum
of these two higher-resolution feature maps gives the final output
H'. The down block follows a similar process, focusing on dimen-
sionality reduction; for the dense up block and dense down block,
dense connections are introduced by concatenating all the previ-
ous low-resolution feature maps or high-resolution feature maps
before applying the iterative up and downsampling operations.

1.2.2 Discriminator network

The structure of the discriminator is illustrated in Fig. |3} The
discriminator consists of nine convolutional layers, each followed
by a batch normalization layer and a leaky rectified linear unit
as the activation function. However, batch normalization is
intentionally excluded from the first layer to prevent issues such
as sample oscillation and model instability, as indicated in [51]].
In order to create customized HRTF data for each individual,
it is essential that the generated SH coefficients are diverse. To
achieve this, the minibatch discrimination mechanism proposed
by [52]] is incorporated into the discriminator network. The
process is as follows: for any sample x; € R4 in a batch, it
is multiplied by a learnable matrix 7 € RA*E*C producing
a feature map M; € RB*C where B stands for the number of
features and C represents the dimensionality of each feature.

The diversity in the b-th feature between sample x; and other
samples is computed as o(x;)p, :):1}/:1 exp(—||Mip—M;p||1) €
R. Thus, each sample x; has a corresponding vector
o(x;)) = [0(x)1,0(xi)2, ..., 0(x:)p] € RE, which contains di-
versity information. This vector o(x;) is then concatenated with
the original input x; to produce the output of the minibatch
discrimination block. This mechanism allows the discriminator to
consider the diversity of samples when assessing the authenticity.
Lastly, two fully connected layers are employed to reduce the
dimensionality of extracted features, and a sigmoid activation
function is applied to the output for binary classification.

1.3 Loss Functions

In an adversarial training framework, the network is typically
optimised using adversarial. In this study, two additional loss
functions are introduced: cosine similarity loss .S, and content

loss LZCG . Therefore the final loss function for the generator.
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Fig. 1: Autoencoder architecture taken from . The blue and green arrows represent the dense connection for Dense Down Blocks
and Dense Up Blocks, respectively. The red arrow indicates the concatenation of upsampled feature maps.
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Fig. 2: Basic Blocks in Decoder taken from .

is defined as:
LO=LEANLE+ L3 (5)

cos

1.3.1 Adversarial loss

The discriminator evaluates the authenticity of the generated
samples and provides a score that reflects how realistic the
upsampled coefficients appear. The adversarial loss for the
autoencoder is defined using binary cross-entropy loss over M
training samples as follows:

1 M

LY== Y log(1-D(G(e)), (©)
m=1

where G(cf") represents the upsampled SH coefficients and

D(G(c[")) denotes the score returned by the discriminator. The
adversarial loss for the discriminator involves contributions from

both real and synthetic samples:

M
P _All Y. lloeD(f)-+log(1 ~D(G(c])] O

where ¢f; represents a sample of high-resolution SH coefficients.

1.3.2 Cosine similarity loss

To further guide the autoencoder in producing realistic SH
coefficients, a cosine similarity loss is employed to measure
the closeness between the generated coefficients and the target
high-resolution coefficients. The similarity is computed for each
frequency bin, and the average across all frequency bins defines
the cosines similarity loss:

#6 = i% <1—
cos W

w=1

2
st ) )

| e ey |
where céw and cﬁ” denote generated SH coefficients and target

high-resolution coefficients given a specific frequency f,, respec-
tively. W is the number of frequency bins in the HRTF data.

1.3.3 Content loss

The content loss proposed in evaluates the discrepancy
between two sets of HRTF data through the LSD metric and
the interaural level difference (ILD) metric. These metrics are
adopted in this work to effectively guide the autoencoder in
generating meaningful coefficients, ultimately enabling the
production of realistic HRTFs. The content loss is the sum of
the LSD and ILD metrics:

ZE=LSD+ILD. ©)

The LSD metric compares the magnitude spectrum between
the generated HRTF data, denoted as Hg and the target HRTF
data Hygr given a specific frequency f,, at position x,,. The LSD
loss can be mathematically written as:

LSD=— Z 2010g10| HR(fW’x")>2, (10)
w, |HG (fiw%n)|

where N represents the total number of positions.
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Fig. 3: Discriminator architecture.

The ILD measures the discrepancy between the magnitude
of sound perceived by the left and right ears. The ILD loss is
computed as the difference between the ILD of the generated
HRTFs and of the target ones, expressed as:

HLeft )
<2010g10 HR (fWaxﬂ)| )

HEE (foo)|

1Y 1 ¥
ID=-Y —
NIk

— | 20logp—7—— ||, (11
( [HG = (fa)

where H™(f,, x,) and HRE"(f,  x,) represent the left and
right ear magnitude responses at frequency f;, and position x;,
respectively.

HE(fovtn)| )

2 EXPERIMENTAL SETUP

2.1 Data

The SONICOM HRTF dataset [[14] was used for training
and evaluating the proposed model. The dataset contains HRTF
measurements from 203 subjects covering both left and right ears.
For each HRTF set it includes HRIRs captured from 793 distinct
positions distributed across a spherical surface with a radius of r
= 1.5m. There are 72-row angles (azimuths) ranging from -180°
to 180°, and 12 column angles (elevations) ranging from -45°
to 90°. Notably, measurements around the horizontal plane are
more densely distributed due to the smaller elevation interval.
This design decision in HRTF measurement systems signifies an
increased precision in human sound localization in this region. It
is worth mentioning that an equal number of measurements were
taken for each elevation. However, this arrangement might not
be true for other HRTF datasets, such as the Acoustic Research
Institute (ARI) HRTF database [53], where fewer measurements
are available at high and low elevations.

Following the preprocessing outlined in Section|l.1] the result-
ing dimensions of the low-resolution HRTF, the chosen order of
SH transformation, and the coefficient sizes are summarized in
Table|1} Take note that the first row shows the size of the original
full HRTF data while an order of 21 is selected to perform the
SH transformation on high-resolution HRTF data, and this order
is also used during postprocessing to inverse the generated SH
coefficients back to the magnitude of HRTFs. The azimuth and
elevation values in the first and second columns specify the num-
ber of angles covered in each respective direction. It is important
to note that the number of azimuth angles chosen for each
elevation does not need to be uniform. For instance, in the case
of the third row with 19 points, the arrangement includes a total
of four elevations (-30°, 0°, 30°, and 60°). In this configuration,
7 points are initially positioned at 7 unique azimuth angles for
an elevation of 0°, while 4 distinct azimuth angles are distributed
across the other three elevations. Fig. ] shows the positions of
the sources for 100 — 793, 19 — 793, 5 —793, 3 — 793.
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Table 1: Downsampled HRTF size and corresponding SH
transformation order and coefficients.

No. No. No. Initial SH Order No.
Azimuth | Elevation Points Coefficients
72 12 793 21 484
20 5 100 8 81
11 4 19 3 16
3 3 5 1 4
3 2 3 1 4

Theoretically, when utilizing all available data points for the
SH transformation, the maximum order that can be used to rep-
resent the high resolution HRTF can be as high as 27 (note that
(274-1)? =784 < 793). This is because the 793 measurements
are evenly distributed around the sphere except for missing
measurements from below the subject (elevations below -45°).

The downsampled HRTFs, on the other hand, do not always
contain measurements that are evenly distributed on the sphere.
The consequence of this and of truncating the SH order causes
a ‘spatial leakage’ effect and an increase in spatial aliasing.
Therefore, the network needs to remove these distortions when
upsampling the SH order to create the high-resolution HRTFs,
as the target SH coefficients do not contain these artefacts. This,
therefore, becomes a sort of denoising/enhancement problem
as the network not only aims to upsample the SH order but
also needs to remove any binaural artefacts caused by few and
non-uniform HRTF measurements in the low-resolution HRTF.

To make this approach more computationally and memory
efficient, we also reduce the SH order used to represent the high-
resolution HRTFs to 21 instead of the maximum possible SH
order of 27. This is possible because the low-order coefficients
are much more important for the reconstruction than the higher
order ones. Therefore, reducing the SH order to 21 will not sub-
stantially influence the quality of the final reconstructed HRTFs.
Another added benefit of this order reduction is removing some
of the issues surrounding the reconstruction of a high number
of coefficients from the latent space, which could be exceedingly
complex for the decoder. The discriminator is also easily able
to distinguish between authentic high-order coefficients and
upsampled coefficients. This phenomenon can potentially be
attributed to the fact that even assuming each coefficient only
deviates slightly from its ground truth value, these small errors
might accumulate substantially as they pass through successive
convolutional layers in the discriminator.

2.2 Model Training

It is important to note that in the SONICOM HRTF dataset, the
left and right HRTFs for the same subject are stored separately.
To facilitate the computation of interaural level differences during
training, the left and right HRTFs are merged along the frequency
dimension, effectively doubling the number of frequency bins.
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Table 2: Hyperparameter values for AE-GAN with different
sparsity levels.

Hyperparameter No. Initial Points

100 [ 19 | 5 [ 3
No. Epochs 200 200 200 200
Content Weight 0.02 0.02 0.01 0.01
Batch Size 4 6 8 8
LR - Generator Ixe | Ixe® | 2xe™® [ 2xe™?
LR - Discriminator | 2xe > | 2xe™> | 3xe > | 3xe™

Specifically, the first 128 frequency bins represent the left ear,
while the subsequent 128 bins pertain to the right ear. This op-
eration does not affect the number of points used for SH transfor-
mation. Among the 203 left-right pairs available, 162 are utilized
for training, while the remaining 41 are reserved for evaluation.

During training, the AE-GAN model generates upsampled co-
efficients, which are multiplied by SHs to obtain high-resolution
HRTFs. These upsampled HRTFs, along with the original
high-resolution HRTFs, are employed to compute the content
loss as described in Section[[.3.3]

The AE-GAN is trained separately for different sparsity levels,
as detailed in Table[2} A content weight of 0.02 is applied for
lower sparsity levels, while it is reduced to 0.01 for higher sparsity
levels. The batch size ranges from 4 to 8, and the Adam opti-
mizer [54] is used with hyperparameters 3; =0.9 and 3, =0.9.
The generator’s learning rate varies from 1e—4 to 2e—4, which
is higher than the discriminator’s learning rate of 2e—5 to 3e—5
to accelerate meaningful interpolation during initial stages. The
discriminator is updated four times more frequently than the
generator to provide accurate and constructive feedback.

The encoder input size depends on the input’s sparsity levels,
which adjusts the number of downsampling operations. These
operations occur at most once in each residual block, with the
stride of the first convolutional layer set to 2 and subsequent lay-
ers set to 1. For extreme cases, such as when only 4 coefficients
are available, no downsampling is performed to retain sufficient
information before encoding into the latent space. The detailed
configuration is illustrated in Table 3]

The training loss curves for both the generator and discrimina-
tor are illustrated in Fig. [5] The flat red line indicates that the dis-
criminator converges quickly during training, suggesting it is ef-
fectively classifying real and generated SH coefficients. The gen-
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Table 3: Residule block configuration for different input sizes.

[ No. Coefficient | Residual Block Configuration |

25 0,222 1]
81 0,2,2.2,1]
16 0,22, 1,1]
4 0,1,1,01,1]

Loss curves

= Discriminator loss
—— Generator loss

Loss
=
S
L

T T T T T T
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Epochs

Fig. 5: Loss curves for discriminator and generator.

content loss
= cos similarity loss
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W 915
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Epochs

Fig. 6: Content loss and cosine similarity loss.

erator loss starts above 2.0 and drops significantly at early steps
since the upsampled SH coefficients deviate from the real sam-
ples by a large margin and stabilise around 1.55 after 160 epochs.
The decreasing loss indicates that the generator is improving over
time, producing samples that are closer to the ground truth targets.
The cosine similarity loss measures the distance between the
reconstructed SH coefficients and the target coefficients, which
is also an indicator of the generator’s capability in upsampling co-
efficients. However, the ultimate goal is to produce realistic high-
resolution HRTFs, and the quality of these HRTF:s is assessed
through the content loss. To examine how the improvement in co-
efficient similarity impacts the generated HRTFs’ quality, the con-
tent loss curve and cosine similarity loss curve are plotted in Fig.
[6} It can be seen that the content loss drops significantly as the
cosine similarity decreases during the first 75 epochs. This trend
shows a positive correlation between the quality of the generated
coefficients and the resultant HRTFs, implying that enhancing the
quality of coefficients leads to an improved final HRTF output.
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Optimization Results: Learning Rate vs Performance Metric

® @ Leamning Rate vs Loss

Performance Metric (loss)

Learning Rate (log scale)

Fig. 7: Bayesian optimization of AE-GAN.

3 MODEL OPTIMIZATION

3.1 Bayesian Optimization

The learning rate is a critical parameter in neural network
training, influencing both the efficiency of the optimization
process and the model’s final performance. Choosing an inappro-
priate learning rate can result in slow convergence, suboptimal
performance, or even instability in training. To systematically
identify the optimal learning rate, Bayesian optimization is
employed to explore the hyperparameter space.

The search space for the learning rate is defined as a logarith-
mic uniform distribution ranging from 1075 to 107!, evaluated
over 200 training epochs. To efficiently navigate this space, the
Tree-structured Parzen Estimator (TPE) algorithm is utilized [55].
Unlike traditional grid or random search methods, TPE adapts
its exploration by modelling the search space probabilistically,
focusing on promising regions based on prior evaluations. The
evaluation criterion used in this optimization is the LSD metric,
which provides a quantitative measure of the model’s spectral
distortion, reflecting its performance under varying learning rates.

The results, depicted in Fig. [/] offer significant insights.
At extremely low learning rates (< 10~%), the loss is higher,
consistent with the expectation that such rates impede efficient
weight updates and risk convergence to poor local minima.
Conversely, excessively high learning rates destabilize training,
causing fluctuations or divergence. Between these extremes lies
a well-defined “sweet spot” where the learning rate minimizes
the loss, achieving a balance between rapid convergence and
training stability. The curve also exhibits a general decay trend,
indicating progressive improvement in the model’s performance
as the learning rate approaches the optimal range.

Through these experiments, the optimal learning rate is
identified as 0.065, achieving a mean LSD error of 5.032. This
optimal value highlights the effectiveness of the TPE algorithm
in uncovering hyperparameters that enhance model performance,
and it underscores the importance of systematic optimization
in neural network training.

3.2 Optimal Speaker Placement

The selection of initial points is crucial in determining
the accuracy of upsampling results, particularly under sparse
measurement scenarios. Each chosen point must encapsulate as
much spatial and auditory information as possible to maximize
the precision of the reconstruction process. For a full set of
individual HRTF measurements, 793 points are typically used.
These points are captured using strategically positioned speakers
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Fig. 8: LSD error for different speaker placement.

around the user, forming a complete auditory spatial dataset (as
shown in Fig. fa).

In scenarios requiring sparse measurements, such as with only
four initial points, the placement of these initial points becomes
even more critical. To evaluate and optimize the effectiveness of
these points, the LSD metric is employed as a robust quantitative
tool. The LSD metric measures the spectral fidelity of the recon-
structed HRTFs, making it ideal for assessing the impact of initial
point selection on the quality of upsampling in sparse setups.

The spatial arrangement of these initial points significantly
influences the ability to reconstruct the auditory field accurately.
Optimal placement ensures that the selected points capture essen-
tial auditory spatial cues, including interaural time differences
(ITDs) and ILDs, which are key for reconstructing accurate
HRTFs. Table [§] presents the results of the speaker placement
selection process.

The speaker placement strategy prioritized leveraging spatial
distribution to minimize LSD error and enhance HRTF upsam-
pling accuracy. Initial experiments focused on key azimuthal
points, such as -45° and 45°, to ensure critical left and right audi-
tory cues were included. Subsequent testing revealed that while
specific column points had minimal individual impact, config-
urations with uniformly distributed points consistently improved
reconstruction accuracy. Further validation through diagonal
configurations and evenly spaced azimuth points confirmed the
advantage of symmetric and balanced spatial distribution.

The lowest LSD error (4.912) was achieved using a symmetric
and evenly spaced configuration, with speakers placed at -180°
and 0° azimuth and elevations of -20° and 60°. This result
underscores the importance of symmetry and uniform spatial
coverage in point placement. Such strategies ensure that the
selected points provide optimal spatial cues for accurate HRTF
reconstruction, particularly in scenarios where sparse data
necessitates efficient use of limited information.

4 EXPERIMENTAL VALIDATION

4.1 Baselines

To evaluate the performance of the proposed approach,
the AE-GAN model is tested on 41 subjects (not seen in
training) from the SONICOM dataset and compared against
three baselines: barycentric interpolation, SH interpolation, and
non-individual HRTF selection.
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The complete AE-GAN implementation and pre-processing
code to reproduce these results are available at [56].

4.1.1 Barycentric interpolation

Barycentric interpolation is a robust technique well-suited for
interpolating values within a simplex by leveraging weighted
averages of the function’s values at the vertices of the simplex.
This method, which employs three barycentric coordinates as
weights assigned to data points, enables the interpolation of
unknown values within a set of known data points based on
their surrounding values. Barycentric interpolation is utilized as
a baseline to benchmark the performance of the proposed model.

4.1.2 SH interpolation

SH interpolation is a widely-used method for HRTF up-
sampling [57]]. This technique projects HRTF data onto SHs,
enabling a smooth and continuous representation across the
spatial domain. By leveraging the mathematical properties of
these spherical basis functions, SH interpolation accurately fills
in missing data points, enhancing the resolution and accuracy of
the upsampled HRTFE. The corresponding SH orders for different
sparsity levels are shown in Table/[I}

4.1.3 Non-individual HRTF selection

Additionally, an alternative approach to modelling individ-
ualized HRTFs involves selecting the best-fitting HRTF from a
database. Following the selection methodologies outlined in [29],
two distinct sets of HRTFs are identified from the test set. These
selections are based on their average LSD error, which quantifies
their deviation from the other HRTFs in the training dataset.
Selection-1 represents the subject whose HRTF yields the lowest
average LSD error, suggesting that it is the most representative
or generic among the dataset. Conversely, Selection-2 identifies
the subject whose HRTF exhibits the highest average LSD error,
indicating that it is the most distinctive or unique.

4.1.4 Two state-of-art methods

The proposed approach is also evaluated on two state-of-
the-art methods that competed in the LAP challenge [46] and
are available online. 1) SUpDEQ-MCA, a hybrid approach
combining SUpDEq (Spatial Upsampling by Directional Equal-
ization) [35], and MCA (Magnitude-Corrected and Time-Aligned
Interpolation) [38]], utilizes natural-neighbor interpolation for
spatial upsampling, followed by magnitude correction and time
alignment to refine the interpolated results. This method is
particularly effective in reconstructing spatial audio data under
low sparsity conditions due to its ability to balance spatial
accuracy with temporal precision. 2) GEP-GAN (Gnomonic
Equiangular Projection-GAN) [29], which employs a similar
GAN-based structure to AE-GAN, demonstrates competitive
performance, particularly at intermediate sparsity levels. It
converts spherical HRIR data into a format for convolutional
neural network processing using two steps: projection onto a 2D
surface and interpolation onto an evenly spaced Cartesian grid.

4.2 LSD Metric Evaluation

The comparative analysis in Fig. [0 highlights the strengths
and limitations of state-of-the-art methods, including SUpDEQ-
MCA, GEP-GAN, and the proposed AE-GAN model, across
varying sparsity levels [46]. The box plot visualizes the mean
LSD error with standard deviation as an error measure. The
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Table 4: Mean LSD error (standard deviation) for AE-GAN
across horizontal and vertical planes for different sparsity levels.
The ‘best’ result of each sparsity level has been highlighted.

Upsampling [No. initial — No. upsampled]

Method 100793 | 195793 [ 55793 | 3793
Horizontal plane | 0.395 (0.41) | 0.449 (045) | 0575 (0.53) | 0.32(055)
Vertical plane_| 0070 (0.11) | 0.061 (021) | 0.031 (0.13) | 0.034 (0.19)

median line represents the central tendency, while the box
interquartile range and whiskers illustrate the variability in error.
The standard deviation is used to generate synthetic samples,
reflecting performance consistency across sparsity levels. Out-
liers are excluded to focus on the primary distribution. Note
that LSD evaluation results of AE-GAN in this paper are differ
slightly compare to previous work [47]due to enhancements in
AE-GAN’s architecture and optimization strategy.

SUpDEQ-MCA demonstrates exceptional performance at low
sparsity levels, achieving the lowest LSD error of 2.93 at 100
initial points. However, its performance deteriorates significantly
under extreme sparsity, with LSD errors increasing to 6.67 at 3
initial points. In contrast, AE-GAN maintains competitive perfor-
mance across all sparsity levels, outperforming SUpDEQ-MCA
at higher sparsity levels with LSD errors of 4.59 and 4.76 at 5 and
3 initial points, respectively. This indicates AE-GAN’s robustness
in sparse data scenarios, where traditional methods and even
state-of-art approaches falter. GEP-GAN achieves the best LSD
error of 4.11 at 19 initial points. However, GEP-GAN’s perfor-
mance declines under extreme sparsity, with an LSD error of
5.21 at 3 initial points, underscoring AE-GAN’s superior ability
to handle sparse HRTF datasets despite architectural similarities.

Traditional interpolation methods, such as SH and Barycentric
interpolation, exhibit substantial limitations as sparsity increases.
While SH performs relatively well at lower sparsity, it suffers
severe degradation at higher sparsity, with LSD errors escalating
to 10.3 and 9.95 for 5 and 3 initial points, respectively. Similarly,
Barycentric interpolation struggles under sparse conditions,
with LSD errors rising to 8.33 and 8.55. This is because the
barycentric interpolation and SH could not accurately estimate
the value at the target position when the neighboring measured
ones are far away from the desired location.

In contrast, the proposed AE-GAN has learned from low
and high-order coefficient pairs, enabling it to reconstruct the
spherical harmonics that closely represent the whole set of HRTF
measurements. Therefore, irrespective of the sparsity levels
applied and the separation between the measured points and
the target position, the AE-GAN is able to predict the values
decently. While Selection-1 slightly outperforms barycentric
interpolation and SH at certain sparsity levels demonstrate
modest improvements over traditional interpolation techniques,
they are consistently outperformed by AE-GAN and other
advanced methods, particularly in extremely sparse scenarios.

To further evaluate the spatial distribution of errors in HRTF
reconstruction, Table [ presents a comparative analysis of the
LSD errors across horizontal and vertical planes for different
sparsity levels. The horizontal plane consistently demonstrates
higher LSD errors and larger standard deviations, indicating chal-
lenges in reconstructing azimuth-related spatial cues. The highest
LSD error of 0.575 is observed at the sparsity level with 5 initial
points, whereas the lowest error of 0.32 is achieved at the sparsity
level with 3 initial points. This variability highlights the model’s
sensitivity to sparsity levels in reconstructing azimuthal features.
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Fig. 9: Log-spectral distance (LSD) error across sparsity levels.
Each box shows the median, interquartile range, and 95%
confidence interval based on synthesized data from reported
means and standard deviations.

Conversely, the vertical plane exhibits consistently low LSD
errors with minimal variability, emphasizing the model’s strength
in capturing elevation-related spatial cues. The lowest error of
0.031 is observed at the sparsity level with 5 initial points, with
similarly low values across other sparsity levels. This stability
suggests that the model benefits from either sufficient training
data coverage or inherent design optimizations that prioritize
elevation-based features.

4.3 Perceptual Auditory Model Evaluation

Another metric under consideration is the evaluation of local-
ization performance, which can be assessed by a Bayesian model,
such as Barumerli2023 [58]. Evaluating localization performance
is crucial as it relates to human perception. It’s worth noting that
even minor errors in LSD can have a significant impact on local-
ization performance. In some cases, even substantial LSD errors
may not affect localization performance to the same degree.

To conduct this evaluation, it is necessary to add the phase
information into the aligned left and right HRTFs. This is
achieved by using a minimum-phase approximation and a simple
ITD model outlined in [29] [59]. The resultant complete HRTFs
are passed into directional transfer functions (DTFs) [60], and the
output features are subsequently input into the Barumerli2023
model for further analysis.

The ‘Target’ result is obtained by assessing the localization
performance of the original high-resolution HRTF against itself,
indicating the best performance that can be achieved. The
evaluation of the proposed method and four baselines are carried
out by comparing their results with the benchmark set by the
‘Target’ standard.

The results derived from the Barumerli2023 model are pre-
sented with a corresponding graphical representation illustrated in
Fig. |10} Lateral root mean square (RMS) error, polar RMS error
and quadrant error as described in [61,62], are mathematically de-
fined for N localization trials, where each target source direction
@; is paired with its response direction @, fori=1,2,....N. A sub-
set of local responses is defined as .o7 = {i: wrap|@;— ¢ <90°},
and the metrics are calculated as follows:

Zied ((‘}t - ¢i))2

Lateral RMS Error= , (12)
||
. b — bh:))2
Polar RMS Error = \/ Z’E“Z’(lel;(f’ )y (13)
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o
Quadrant Error — (1 — %) % 100. (14)

The evaluation results in Fig. [I0| reaffirm the superior per-
formance of the AE-GAN model across various sparsity levels,
demonstrating its robustness compared to baseline methods.
For lateral RMS Error, AE-GAN achieves the best results
for low sparsity levels, maintaining a competitive edge with
errors of 2.63 and 4.12 at 100 and 19 initial points, respectively.
GEP-GAN performs best at extreme sparsity, achieving the best
performance at 5 and 3 initial points with errors of 2.83 and 2.75,
indicating a strong capability for handling sparse datasets. This
result indicates that with more initial points, the AE-GAN model
benefits from a richer set of input data. It enables AE-GAN’s
latent space representation to accurately capture intricate spatial
cues and project them into corresponding positions.

For polar RMS error, AE-GAN demonstrates consistent
superiority in low sparsity levels, achieving the best error of
6.74 at 100 initial points. At higher sparsity, GEP-GAN achieves
strong results, particularly in extreme sparsity conditions. Its
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GAN-based structure, which is similar to AE-GAN, allows it
to effectively handle sparse input data. This is demonstrated by
its recorded errors of 13.17 and 10.35 at 5 and 3 initial points,
respectively, further showcasing its adaptability in such scenarios.
Traditional methods like barycentric interpolation and SH also
struggle at higher sparsity, where their geometric assumptions
just break apart.

In terms of quadrant error, AE-GAN shows strong adaptability
across sparsity levels, achieving competitive errors of 10.41
and 9.83 at 19 and 5 initial points, respectively. While SH and
Barycentric interpolation shows relatively better performance
at low sparsity levels (errors of 7.75 and 7.12, respectively, at
100 initial points), their performance deteriorates significantly at
higher sparsity, with errors exceeding 30.42 for SH and 32.65 for
Barycentric at 3 initial points. GEP-GAN achieves notable results
in this metric as well, with an error of 8.34 at 3 initial points,
highlighting its robustness in sparse conditions. Interestingly,
this observation highlights that performance on polar RMS error
and lateral RMS error does not directly correlate with quadrant
error, as improvements in the former metrics may not necessarily
translate to better quadrant error performance and could, in some
cases, contribute to worse results.

Selection-1 and Selection-2, while consistent across all
sparsity levels, exhibit higher errors overall compared to AE-
GAN and GEP-GAN. Selection-1 records errors of 3.78 for
Lateral RMS Error, 41.67 for Polar RMS Error, and 27.67 for
Quadrant Error, while Selection-2 records 8.33, 42.11, and 26.93,
respectively. These results indicate limited adaptability of the
selection-based approaches to varying sparsity levels.

5 DISCUSSION

While our study focused on the evaluation of GEP-GAN and
SUpDEQ-MCA, it is essential to also consider the performance
of other top-ranked methods submitted to the LAP Challenge.
MERL-1 and MERL-2 [63], the winning submissions in Task
2, employed neural field architectures and retrieval-augmented
generation to produce high-fidelity HRTFs across all sparsity
levels. These methods showed strong consistency across eval-
uation metrics such as ITD, ILD, and LSD, particularly at higher
sparsity levels such as 3—793 and 5—793. Their performance
highlights the advantage of personalized model fine-tuning
and data augmentation strategies when dealing with limited
spatial information. In contrast, SYT-FSP-AE, which used a
frequency-aware conditioned autoencoder, demonstrated moder-
ate performance across LSD and perceptual metrics. While less
competitive at extreme sparsity levels, it maintained robustness
due to its generalizable structure that integrates position and
frequency cues during reconstruction. This approach provides a
middle ground between computational complexity and accuracy,
particularly when adapting to unseen subjects or new datasets.

Interestingly, a key insight from the LAP Challenge was
that LSD scores do not align well with perceptual localization
performance, especially for machine learning-based methods.
Some models that ranked highly on LSD, such as GEP-GAN,
underperformed on polar and lateral RMS errors. In contrast,
SUpDEQ-MCA [64,(65], although not winning overall, achieved
the best results on polar RMS and quadrant error at high sparsity
levels (e.g., 100 and 19 positions). This finding reinforces the
importance of including perceptual auditory models in evaluation
pipelines, beyond relying solely on spectral distortion metrics.
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6 CONCLUSION

In this paper, it is shown that the proposed AE-GAN frame-
work is capable of upsampling highly sparse HRTFs, especially in
conditions where conventional interpolation methods prove inad-
equate. Instead of applying deep learning directly to the unevenly
distributed HRTF data, the proposed approach transformed the
HRTF data in the frequency domain into the SH domain. This
transformation encoded the original spatial and frequency infor-
mation into a set of SH functions and their associated coefficients,
providing a structured and compact representation. The LSD eval-
uation highlights that the proposed deep learning model outper-
forms barycentric interpolation, particularly in extreme sparsity
scenarios involving fewer than 12 measurements. These results
underscore AE-GAN’s robustness and effectiveness in addressing
challenges posed when only sparse measurements are available.

In future work, alternative deep-learning models for SH coef-
ficient extrapolation could be explored. Improving the weighting
of harmonics could lead to more accurate representations of the
original HRTFs, offering further improvements in reconstruction
fidelity. The process of reconstructing high-order coefficients
from low-order coefficients aligns well with sequence-to-
sequence prediction frameworks. Another avenue to explore
would be more advanced neural architectures, such as recurrent
neural networks (RNNs) [66] and transformer models [67], as
these models excel at processing variable-length inputs, making
them particularly suitable for scenarios where the SH order
varies based on the number of HRTF measurements. Such future
studies could pave the way for more versatile and efficient HRTF
upsampling techniques, further advancing the field.
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